Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Naunyn Schmiedebergs Arch Pharmacol ; 394(1): 107-115, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32840651

RESUMO

Tryptase is a serine protease that is released from mast cells during allergic responses. Tryptase inhibitors are being explored as treatments for allergic inflammation in the skin and respiratory system, most notably asthma. Here we report direct tryptase inhibition by natural product compounds. Candidate inhibitors were identified by computational screening of a large (98,000 compounds) virtual library of natural product compounds for tryptase enzymatic site binding. Biochemical assays were used to validate the predicted anti-tryptase activity in vitro, revealing a high (four out of six) success rate for predicting binding using the computational docking model. We further assess tryptase inhibition by a biflavonoid scaffold, whose structure-activity relationship is partially defined by assessing the potency of structurally similar analogs.


Assuntos
Biflavonoides/farmacologia , Produtos Biológicos/farmacologia , Triptases/antagonistas & inibidores , Biflavonoides/química , Produtos Biológicos/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Triptases/metabolismo
2.
Bioorg Med Chem Lett ; 29(13): 1647-1653, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31047749

RESUMO

Despite their clinical importance, drug resistance remains problematic for microtubule targeting drugs. D4-9-31, a novel microtubule destabilizing agent, has pharmacology that suggests it can overcome common resistance mechanisms and has been shown to remain efficacious in cell and animal models with acquired taxane resistance. To better understand resistance mechanisms and the breadth of cross-resistance with D4-9-31, this study examines the A2780 ovarian cancer cell line as it develops acquired resistance with continuous exposure to D4-9-31. Analyzing cellular responses to D4-9-31 reveals that D4-9-31 resistance is associated with increased mitochondrial respiration, but no cross-resistance to other microtubule targeting agents is observed. Sequencing of transcripts of parental cells and resistant counterparts reveals mutations and altered expression of microtubule-associated genes, but not in genes commonly associated with resistance to microtubule targeting drugs. Additionally, our findings suggest distinct mechanisms drive short- and long-term drug resistance.


Assuntos
Amidas/uso terapêutico , Microtúbulos/efeitos dos fármacos , Polimerização/efeitos dos fármacos , Piridinas/uso terapêutico , Pirimidinas/uso terapêutico , Amidas/farmacologia , Humanos , Piridinas/farmacologia , Pirimidinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...